133 research outputs found

    Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence

    Get PDF
    AbstractObjective We have demonstrated in bovine chondrocytes that nitric oxide (NO) mediates IL1 dependent apoptosis under conditions of oxidant stress. This process is accompanied by activation of c-Jun NH2-terminal kinase (JNK; also called stress-activated protein kinase). In these studies we examined activation of JNK in explant cultures of human osteoarthritic cartilage obtained at joint replacement surgery and we characterized the role of peroxynitrite to act as an upstream trigger.Design A novel technique to isolate chondrocyte proteins (<10% of total cartilage protein) from cartilage specimens was developed. It was used to analyse JNK activation by a western blot technique. To examine the hypothesis that chondrocyte JNK activation is a result of increased peroxynitrite, in vitro experiments were performed in which cultured chondrocytes were incubated with this oxidant.Results Activated JNK was detected in the cytoplasm of osteoarthritis (OA) affected chondrocytes but not in that of controls. In vitro, chondrocytes produce NO and superoxide anion. IL-1 (48h), which induces nitric oxide synthase, resulted in an activation of JNK; this effect was reversed by N-monomethylarginine (NMA). TNFα treated chondrocytes at 48h produce superoxide anion (EPR method). Exposure of cells to peroxynitrite led to an accumulation of intracellular oxidants, in association with JNK activation and cell death by apoptosis.Conclusion We suggest that JNK activation is among the IL-1 elicited responses that injure articular chondrocytes and this activation of JNK is dependent on intracellular oxidant formation (including NO peroxynitrite). In addition, the extraction technique here described is a novel method that permits the quantitation and study of proteins such as JNK involved in the signaling pathways of chondrocytes within osteoarthritic cartilage

    Genomic, Lipidomic and Metabolomic Analysis of Cyclooxygenase-null Cells: Eicosanoid Storm, Cross Talk, and Compensation by COX-1

    Get PDF
    AbstractThe constitutively-expressed cyclooxygenase 1 (COX-1) and the inducible COX-2 are both involved in the conversion of arachidonic acid (AA) to prostaglandins (PGs). However, the functional roles of COX-1 at the cellular level remain unclear. We hypothesized that by comparing differential gene expression and eicosanoid metabolism in lung fibroblasts from wild-type (WT) mice and COX-2-/- or COX-1-/- mice may help address the functional roles of COX-1 in inflammation and other cellular functions. Compared to WT, the number of specifically-induced transcripts were altered descendingly as follows: COX-2-/->COX-1-/->WT+IL-1β. COX-1-/- or COX-2-/- cells shared about 50% of the induced transcripts with WT cells treated with IL-1β, respectively. An interactive “anti-inflammatory, proinflammatory, and redox-activated” signature in the protein–protein interactome map was observed in COX-2-/- cells. The augmented COX-1 mRNA (in COX-2-/- cells) was associated with the upregulation of mRNAs for glutathione S-transferase (GST), superoxide dismutase (SOD), NAD(P)H dehydrogenase quinone 1 (NQO1), aryl hydrocarbon receptor (AhR), peroxiredoxin, phospholipase, prostacyclin synthase, and prostaglandin E synthase, resulting in a significant increase in the levels of PGE2, PGD2, leukotriene B4 (LTB4), PGF1α, thromboxane B2 (TXB2), and PGF2α. The COX-1 plays a dominant role in shifting AA toward the LTB4 pathway and anti-inflammatory activities. Compared to WT, the upregulated COX-1 mRNA in COX-2-/- cells generated an “eicosanoid storm”. The genomic characteristics of COX-2-/- is similar to that of proinflammatory cells as observed in IL-1β induced WT cells. COX-1-/- and COX-2-/- cells exhibited compensation of various eicosanoids at the genomic and metabolic levels

    A RG-II type polysaccharide purified from Aconitum coreanum and their anti-inflammatory activity

    Get PDF
    Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation

    Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult

    Get PDF
    Research reported in this publication was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number R01AR60361, R01AR061988, P41EB002520). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. ART was supported by a National Science Foundation Graduate Fellowship

    F-Spondin/spon1b Expression Patterns in Developing and Adult Zebrafish

    Get PDF
    F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate

    Osteopontin induces growth of metastatic tumors in a preclinical model of non-small lung cancer

    Get PDF
    Osteopontin (OPN), also known as SPP1 (secreted phosphoprotein), is an integrin binding glyco-phosphoprotein produced by a variety of tissues. In cancer patients expression of OPN has been associated with poor prognosis in several tumor types including breast, lung, and colorectal cancers. Despite wide expression in tumor cells and stroma, there is limited evidence supporting role of OPN in tumor progression and metastasis. Using phage display technology we identified a high affinity anti-OPN monoclonal antibody (hereafter AOM1). The binding site for AOM1 was identified as SVVYGLRSKS sequence which is immediately adjacent to the RGD motif and also spans the thrombin cleavage site of the human OPN. AOM1 efficiently inhibited OPNa binding to recombinant integrin αvβ3 with an IC50 of 65 nM. Due to its unique binding site, AOM1 is capable of inhibiting OPN cleavage by thrombin which has been shown to produce an OPN fragment that is biologically more active than the full length OPN. Screening of human cell lines identified tumor cells with increased expression of OPN receptors (αvβ3 and CD44v6) such as mesothelioma, hepatocellular carcinoma, breast, and non-small cell lung adenocarcinoma (NSCLC). CD44v6 and αvβ3 were also found to be highly enriched in the monocyte, but not lymphocyte, subset of human peripheral blood mononuclear cells (hPBMCs). In vitro, OPNa induced migration of both tumor and hPBMCs in a transwell migration assay. AOM1 significantly blocked cell migration further validating its specificity for the ligand. OPN was found to be enriched in mouse plasma in a number of pre-clinical tumor model of non-small cell lung cancers. To assess the role of OPN in tumor growth and metastasis and to evaluate a potential therapeutic indication for AOM1, we employed a KrasG12D-LSLp53fl/fl subcutaneously implanted in vivo model of NSCLC which possesses a high capacity to metastasize into the lung. Our data indicated that treatment of tumor bearing mice with AOM1 as a single agent or in combination with Carboplatin significantly inhibited growth of large metastatic tumors in the lung further supporting a role for OPN in tumor metastasis and progression

    Retro-trochanteric sciatica-like pain: current concept

    Get PDF
    The aim of this manuscript is to review the current knowledge in terms of retro-trochanteric pain syndrome, make recommendations for diagnosis and differential diagnosis and offer suggestions for treatment options. The terminology in the literature is confusing and these symptoms can be referred to as ‘greater trochanteric pain syndrome’, ‘trochanteric bursitis’ and ‘trochanteritis’, among other denominations. The authors focus on a special type of sciatica, i.e. retro-trochanteric pain radiating down to the lower extremity. The impact of different radiographic assessments is discussed. The authors recommend excluding pathology in the spine and pelvic area before following their suggested treatment algorithm for sciatica-like retro-trochanteric pain. Level of evidence II
    corecore